Energy Harvesters with High Electromagnetic Conversion Efficiency through Magnet and Coil Arrays

Qian Zhang and Eun Sok Kim

Department of Electrical Engineering-Electrophysics University of Southern California Los Angeles, CA 90089-0271

01/22/2013

Outline

Introduction

- Electromagnetic energy harvesting
- Power levels in recent harvesters

- Energy harvesters with magnet and coil arrays
 - Working principle
 - Microfabricated energy harvester
 - MEMS fabrication, experimental testing setup and results
 - Macroscale energy harvester
 - Experimental results and video

Summary

Renewable Energy Sources

Wind energy

> ...

Hydropower energy


```
Ocean-wave energy
```

From nature resources
Wind energy
Water energy
Wave energy
Electrical energy

Electromagnetic transduction

- Faraday's law
- Low working frequency
- Low output impedance

Recent Electromagnetic Energy Harvesters

Frequency-increased generator

- Volume: 68cc
- Vibration: 4mm at 2Hz (55mg)
- Harvested power: 57µW

T.V. Galchev et al., JMM, 2011.

Optimizing arrangement of magnets

- Volume: 9.3cc
- Vibration: 85µm at 102Hz (3.6g)
- Harvested power: 290µW
- E. Sardini et al., Sensors and Actuators A, 2011.

Power?

Model of Vibration-Driven Power Generator

Increasing Power Output

At resonant frequency $(\omega = \omega_n) \varepsilon = NS\omega_n Y_0 \frac{1}{2\zeta} \frac{dB}{dz}$

 $\frac{dB}{dz}$ To increase power output, \succ increase N and S \longrightarrow larger volume and weight > increase ω_n and $Y_0 \longrightarrow$ more vibration energy

Magnetic Flux Change – One Magnet

Magnetic field lines

Magnetic flux density (B_z) and its gradient (dB_z/dz)

When magnetic field is provided by a single magnet,
magnetic flux change is caused by a distance change.

Magnetic Flux Change – Two Magnets

Magnetic field lines

Magnetic flux density (B_7) and its gradient (dB_z/dy)

When magnetic field is provided by two magnets through alternating north- and south-orientation on a planar surface, > magnetic flux changes in the direction parallel to the planar surface peaking at the boundary between two magnets

> increasing as the distance (d) from the magnet surface is decreased

Energy Harvester with Magnet and Coil Arrays

Spring system

- Magnet array with alternating north- and southorientation on a planar surface
 - Coil array over the boundaries between the magnets
- Vibration direction parallel to the planar surface
- Gap between magnet array and coil array as close as possible

Fabrication Steps Microfabricated Energy Harvester

(a) KOH etching

(b) Electroplating copper

(c) Si etching by DRIE

(d) Assembling magnets

- Narrow gap between the magnet array and coil array
- Microdiaphragm-based front-to-backside alignment technique

Microfabricated Electromagnetic Energy Harvester

Top-view and bottom-view

Testing Setup

Measured Electromotive Force (EMF) vs Vibration Frequency

Power Output Delivered to Loads

- Output voltage and power across a load
 - For different resistances
 - with the largest power delivered to a matched load

- Power output vs input acceleration
 - into 10.8Ω load
 - > at the resonant frequency
 - > 2.6µW is delivered from 3.75g acceleration at 290Hz (vibration amplitude = 11µm)

Summary of Microfabricated Energy Harvester

Total volume (mm ³)	20×5×0.9 (0.09cc)
Weight (gram)	0.5
Resonant frequency (Hz)	290
Vibration amplitude (µm)	11
Input acceleration (g)	3.75
Open circuit voltage (mV _{p-p})	30
Load resistance (Ω)	10.8
Power output (µW)	2.6

Resonant frequency can be adjusted by design of silicon cantilever

- Coil resistance can be reduced by electroplating thick copper
- Number of array can be increased easily for mass production

Macroscale Energy Harvester

Scaled up to 16 magnets and 12 coils

> 12 coils are connected in series

> V_{p-p} =22V at a resonant frequency of 82Hz with vibration amplitude of 414µm

Power Output Delivered to Load

- Power output vs. input acceleration
 - > into 96Ω load
 - 158mW is delivered from 11.2g acceleration at 82Hz (vibration amplitude of 414µm)

- Demo of the energy harvester
 - > 120mW incandescent light bulb
 - Directly connected
 - Close to the bulb's full capacity

- A new electromagnetic-transduction idea to increase the mechanical-to-electrical conversion efficiency
 - array of magnets is used to provide a rapidly changing magnetic field
- The <u>micro</u>fabricated energy harvester, occupying a volume of 0.09cc weighing 0.5 gram, produces 2.6µW at 290Hz (vibration amplitude of 11µm)
- The <u>macro</u>scale version, that is scaled up to 26cc weighing 90 gram, generates 158mW at 82Hz (vibration amplitude of 414µm), and lights an incandescent light bulb

